DEVELOPING UNDERSTANDING OF FRACTIONS, DECIMALS AND PERCENTAGES			
Year	NC Objectives	Examples	Models and Images
EYFS	- Share objects, shapes and count how many are in each group (early division) - Solve problems involving halving and sharing	Adults to use fraction vocabulary of halves, quarters, thirds etc when describing the number of groups).	What is half of 8 ? Half of 8 is 4 .
Year 1	- Recognise, find and name a half as one of two equal parts of an object, shape or quantity - Recognise, find and name a quarter as one of four equal parts of an object, shape or quantity - Begin to learn sharing and grouping into equal parts. - Begin to recognise that the larger the denominator the smaller the fraction (unit fractions or same numerator).	Children use their knowledge of fractions of shape to find fractions of quantities. Children should be give practical apparatus to find halves and quarters of quantities within 20. Record work pictorially.	An array can be used to demonstrate sharing. Sharing - sharing the counters among 4 people, each person gets 3 . Grouping- 3 groups/ lots of 4 . Can you cut the pizaa in half?

\square

	fractions, and fractions with the same denominators - Securely understand that the larger the denominator the smaller the fraction (if a unit fraction). (Leighton School guidance).		
Year 4	- recognise and show using diagrams, families of common equivalent fractions - count up and down in hundredths; recognise that hundredths arise when dividing an object by one hundred and dividing tenths by tenths - solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number - add and subtract fractions with the same denominator - find the effect of dividing a one- or two-digit number by 10 and 100 , identifying the value of the digits in the answer as ones, tenths and hundredths	$\begin{aligned} & 1 \div 100=1 / 100 \\ & 2 \div 100=2 / 100 \\ & 3 / 7 \text { of } 56=24 \\ & 3 / 10 \text { of } 120=36 \\ & 1 / 4=12 \\ & 3 / 4=- \\ & 3 / 10+4 / 10=7 / 10 \\ & 9 / 100-7 / 100=2 / 100 \end{aligned}$ Children can record on a number line equivalents between $1 / 10$ and 0.1 Count on and back in tenths as decimals and relate to counting on/back in 10ths (fractions).	Use the rows of a multiplication square to show equivalence e.g: 1/2, 2/4, 3/6, 4/8 2/3, 4/6. 6/9, 8/12. Count back in 1 and $1 / 10$ from 101.

- identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths
- read and write decimal numbers as fractions (remember to link this to the teaching of percentages so they can see the relationship)
- recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents
- recognise the per cent symbol (\%) and understand that per cent relates to "number of parts per hundred", and write percentages as a fraction with denominator 100 as a decima fraction
- add and subtract fractions with the same denominator and denominators that are multiples of the same number
- recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements >1 as a mixed number
- multiply proper fractions and mixed numbers by whole
$=80 / 100=0.8$
(e.g. $0.71={ }^{71} /{ }_{100}$).

I eat 1 more piece of this cake. What fraction would be left?

$$
6 / 4-3 / 4=3 / 4
$$

$2 / 5 \times 2=$

or

Then convert to a mixed number.
E.g. $6 / 20+3 / 10$. Find common denominator and then add together. Encourage chdn to simplify answer where possible.
(e.g. ${ }^{2} / 5+{ }_{5}^{4} /{ }_{5}^{6} / 5=1 /{ }_{5}^{1}$)

Initially $2 / 5 \times 2$
$4 / 5 \times 6=(6 \times 4) \div 5=24 / 5$.

	decimals and percentages, including in different contexts. - add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions - multiply simple pairs of proper fractions, writing the answer in its simplest form [for example, $1 / 4 \times 1 / 2=1 / 8$] - multiply one-digit numbers with up to two decimal places by whole numbers - divide proper fractions by whole numbers [for example, $1 / 3 \div 2=1 / 6$] - multiply one-digit numbers with up to two decimal places by whole numbers - $\quad \mathrm{x}$ and \div numbers by 10,100 and 1000 up to three decimal places - identify the value of each digit to three decimal places - associate a fraction with division and calculate decimal fraction equivalents (e.g.	Turn them into equivalent fractions with common denominators. Then add and subtract as applicable. Find simplest form where possible. $\text { (e.g. } \left.{ }^{1} /{ }_{4} \times{ }^{1} / 2={ }_{2}^{1} /{ }_{8}\right)$ $3 / 4 \times 8 / 9=24 / 36$. Then simplify to $2 / 3$ by finding a common denominator. 3.25×4 Use short multiplication to solve this.	$3 / 4+7 / 8=15 / 8$ $\frac{1}{3} / 8+7 / 8=\frac{2 \pi}{3}-1 \frac{1}{3}$ $\begin{aligned} & 4 / 6-1 / 3=2 / 6 \\ & 1 / 3=2 / 6 \\ & 3 x^{2}=2 \\ & 4 / 6-2 / 6=2 / 6 \end{aligned}$ $\frac{1}{4} \times \frac{1}{2}=\frac{1}{8}$ $\frac{1}{8}\left(\sim \frac{1}{2} 0 f a \frac{1}{4}\right)$

0.375) for a simple fraction (e.g. ${ }^{3 / 8}$) - use written division methods where the answer has up to two decimal places.		
		For a Fraction divided by a whole number, there are two stages in which the process can be taught: Stage 1: $\frac{2}{5} \div 4=$ Drag the whole number underneath the dividing line and multiply by the denominator ... $\frac{2}{5 \times 4}=\frac{2}{20}=\frac{1}{10}$ Stage 2: Turn the whole number into a fraction (4 becomes $\frac{4}{1}$) then reverse the fraction and the operation so it becomes... 1. Stage 2: $\frac{2}{5} \times \frac{1}{4}=\frac{2}{20}=\frac{1}{10}$

